
Summary of Research

Grant NAG-1-02095

Formal verification of safety properties for aerospace systems through
algorithms based on exhaustive state-space exploration

NASA Langley Research Center

PI: Gianfranco Ciardo
Department of Computer Science, College of William and Mary, Williamsburg, VA 23187
(now at University of California, Riverside, CA 92521)

The following report has been submitted for publication to the journal STTT - Software Tools
for Technology Transfer, and is coauthored by Radu I. Siminiceanu, who was a PhD student in the
Department of Computer Science at The College of William and Mary, and Gianfranco Ciardo,
who was a Professor in the Department of Computer Science at The College of William and Mary,
during most of the duration of this grant. Radu I. Siminiceanu is now at National Institute of
Aerospace, Hampton, VA 23666 (radu@nianet.org) and Gianfranco Ciardo is now at University of
California, Riverside, CA 92521 (ciardo@cs.ucr.edu).

1

Formal Verification of the
NASA Runway Safety Monitor

Abstract

The Runway Safety Monitor (RSM) designed by Lockheed Martin is part of NASA's effort
to reduce aviation accidents. We developed a Petri net model of the RSM protocol and used
the model checking functions of our tool S" to investigate a number of safety properties in
RSM. To mitigate the impact of state-space explosion, we built a highly discretized model of the
system, obtained by partitioning the monitored runway zone into a grid of smaller volumes and
by considering scenarios involving only two aircraft. The model also assumes that there are no
communication failures, such as bad input from radar or lack of incoming data, thus it relies on
a consistent view of reality by all participants. In spite of these simplifications, we were able to
expose potential problems in the RSM conceptual design. Our findings were forwarded to the
design engineers, who undertook corrective action. Additionally, the results stress the efficiency
attained by the new model checking algorithms implemented in E", and demonstrate their
applicability to real-world systems. Attempts to verify RSM with NuSMV and SPIN have failed
due to excessive memory consumption.

1 Introduction

As the systems that are put into operation grow in complexity every year, an increasing share of
the functionality in modern aircraft is shifted to computer-based, automated devices. However, this
rapid advance in sophistication is not matched by an equal advance in the degree of certification
of the deployed devices. This is due to the tremendous amounts of resources, measured in time,
human expertise, and money, required for the analysis of complex systems.

The field of formal methods offers an alternative to traditional testing approaches that can ex-
plore only a limited number of scenarios. Formal verification uses rigorous mathematical techniques
to exhaustively check that a model of the system satisfies a set of desired properties.

Model checking, which has gained increased popularity since the early 9Os, is a completely au-
tomatic technique that relies on discovering the set of reachable states of the model and evaluating
whether a given property, expressed in a temporal logic, is satisfied or not. The model is usually
specified in a modeling language, such as automata, Petri nets, or pseudo-code, rather than using
mathematical notation. If a temporal property holds, model checking certifies it with 100% confi-
dence. When a property does not hold, the model checking tool provides a counterexample, in the
form of an execution path in the model, which can illustrate the source of the errors.

When using these computerized tools to verify modern protocols, the major obstacle is usually
the state-space explosion phenomenon. As the size and complexity of a model increases, the size of
the state-space also increases, sometimes exponentially. Nevertheless, advances in model checking
techniques, particularly in symbolic model checking, have made it possible to analyze systems with
extremely large state spaces.

Model checking has been particularly successful in the verification of complex, mostly syn-
chronous, circuit designs. However, until recently, it has usually been considered inadequate for
verifying large asynchronous protocols and software. For the last several years, our research has
successfully targeted the class of globally-asynchronous locally-synchronous systems, consisting of
loosely coupled systems (homogeneous or heterogeneous) evolving somewhat independently of each
other.

Recently, NASA and Lockheed Martin have begun developing a protocol to detect runway
incidents, called the Runway Safety Monitor (RSM) [12], which represents an excellent candidate
for our techniques. While its verification was challenging and pushed our computational resources

2

to the limit, we were able to discover several obscure scenarios that constitute potential hazards.
Equally significant, however, is the fact that so few hazards were discovered overall, compared to
the total number of reachable states, 6.7 x This is strong evidence that RSM is robust and
safe.

The rest of the paper is structured as follows. Sections 2 and 3 describe RSM and our tool
SWT, which we used for this study. Section 4 gives the details of the RSM model we developed
and Section 5 reports the results of our analysis. Finally, Section 6 summarizes our work and
discusses ideas for future extensions.

2 The Runway Safety Monitor

The Runway Safety Monitor (RSM) is a component of NASA’s Runway Incursion Prevention Sys-
tem (RIPS) research [16]. Designed and implemented by Lockheed Martin engineers, RSM is
intended to be incorporated in the Integrated Display System (IDS) [l], a suite of cockpit systems
which NASA has been developing since 1993. IDS also includes other conflict detection and pre-
vention algorithms, such as TCAS I1 [17]. The IDS design enables RSM to exploit existing data
communications facilities, displays, Global Positioning System (GPS), ground surveillance system
information, and data-links.

Collision avoidance protocols are already in operation. TCAS [17] has been in use since 1994
and is now required by the Federal Aviation Administration (FAA) on all commercial US aircraft.
TCAS has a full formal specification, but it has been verified only partially, due to its complexity

The Small Aircraft Transportation System SATS [2], also under development at NASA Langley
to help ensure safe landings of general aviation craft at towerless regional airports, has been instead
formally verified [ll].

Purpose of RSM. The goal of the Runway Safety Monitor is to detect runway incursions, defined
by the FAA as “any occurrence at an airport involving a n aircraft, vehicle, person, or object o n the
ground, that creates a collision hazard or results in the loss of separation with an aircraft taking
08, intending to take off, landing, or intending to land. ”

Since most air safety incidents occur on or near runways, the Runway Safety Monitor plays a key
role in accident avoidance. RSM is not intended to prevent incursions, but to detect them and alert
the pilots. Prevention is provided by other components of RIPS in the form of a number of IDS
capabilities such as heads-up display, electronic moving map, cockpit display of traffic information,
and taxi routing. Experimental studies conducted by Lockheed Martin [12, 211 show that incursion
situations are less likely to occur when IDS technology is employed on aircraft. RSM should greatly
improve this positive effect.

RSM design. Figure 1 shows the high-level architecture of the RSM algorithm. RSM runs on a
device installed in the cockpit and is activated prior to takeoff and landing procedures at airports.
An independent copy of RSM runs on each aircraft and refers to the aircraft on which it is operating
as ownshzp and to other aircraft, ground vehicles using the same runway, or even physical obstacles
such as equipment, as targets.

RSM monitors traffic in a zone surrounding the runway where the takeoff or landing is to take
place. The zone is a 3-D volume of space that runs up to 220 feet laterally from each edge of the
runway, up to 400 feet of altitude above the runway, and 1.1 nautical miles from each runway end
(the 400 feet altitude corresponds to a 3” glide slope for takeoff/landing trajectories).

The protocol, implemented as a C-language program, consists of a repeat-loop over three major
phases. In the first phase, RSM gathers traffic information from radar updates received through

[3, 131.

3

t i I i

I
not requ'ed! RETURN

A 4 Ownship
not in Zone

IDS Traffic Each traffic scan IDS Runway
Monitor 1-d Safety Monitor

Start/Stop/Continue - Test Own-ship Zone in
Incursion Testing

I t I I

No zone traffic Track all Traffic
in Incursion Zone -

I Testing - 1-

Test Traffic in
Incursion Zone

Test for Incursions
(each target below

I I I I I

Get Own-ship and
Traffic States. +.

Incursion detected:
set alert flagsldata

No Incursion: clear
alert flagsldata

zone altitude) Compute Traffic Data

Figure 1: RSM Algorithm top-level design.

a data-link. It identifies each target present in the monitored zone and stores its 3-D physical
coordinates. The frequency of the updates may not be constant, updates can be lost, and data
might even be faulty. The implications of data-link errors or omissions are not addressed in this
study, but present a challenging task for future study. These errors have already been the subject of
some experimental measurements [21], and their analysis calls for a stochastic flavor not captured
in our present model, which is instead concerned only with logical errors.

In the second phase, the algorithm assigns a status to each target, from a predetermined set of
values that includes taxi, pre-takeoff, takeoff, climb out, landing, roll out, and fly-through modes.
We discuss in detail the meaning of these state when we describe our model of the system.

The third phase is responsible for detecting incursions, and is performed for each target based
on the spatial attributes (position, heading, acceleration) of ownship and target, plus some logical
conditions. Table 2, discussed later, shows the operational state matrix of this phase. Our analysis
focuses on certifying that this decision procedure is able to detect all possible incursion scenarios,
or on finding possible incursion scenarios where RSM fails to raise an alarm.

3 Overview of the Sh" tool

To model the Runway Safety Monitor, we employ our tool f" (the Stochastic and Model
checking Analyzer for Reliability and Timing) [5], which we developed for the logical and stochastic
analysis of structured systems. Given a formal description of a system as a Petri net, SAKI' can
generate the state-space, verify temporal-logic properties, and provide efficient numerical solutions
for timing and stochastic analysis. SPWT has several advantages over most other model checkers:

4

Compact storage for states with Multiway Decision Diagrams (MDDs) [MI, a generalized
version of the Binary Decision Diagrams (BDDs) for multi-valued variables.

Extremely compact encoding of the transition relation between states with Kronecker matrices
~71.

Efficient symbolic state-space exploration algorithms based on saturation [6], a state-of-the-
art fixed-point iteration strategy.

Fast generation of counterexamples, based on Edge-Valued MDDs (EVMDDs) [8].

The SWZT input is a Petri net with Turing-equivalent extensions (immediate transitions and
marking dependent arc cardinalities) [20], required to have a finite state-space. Each SWIFT input
file defines one or more structured (i.e., partitioned into submodels) event-based models. A model
can be parameterized and defines a set of measures, which, in our case, can be thought of logical
queries to be evaluated by systematic state exploration.

SWT implements a wide range of explicit as well as implicit exploration methods. Use of the
most advanced techniques requires a partition of the model to exploit the system structure. A par-
tition of the Petri net model into K submodels is equivalent to partitioning its places (representing
the system variables) into subnets. Subsequently, a system state (a marking of the places with
tokens) can be written as the concatenation of K local states (submarkings) and thus be encoded
as an MDD. In particular, a partition is Kronecker-consistent if any global system behavior can
be expressed as a functional product of local behaviors for each subsystem. For example, from a
logical point of view, an event in the model is globally enabled if it is locally enabled in each of
the K submodels in isolation. Similar consistency requirements can be defined for transition guard
expressions or, from a stochastic point of view, for transition firing rates (but only the logical in-
terpretation of Kronecker consistency is needed in this study). A more detailed discussion follows
in Section 4.

The SWT input syntax is presented in the comprehensive SWT User Manual [4].
There are several reasons to why we used a tool designed for the analysis of discrete-state

systems to model and verify an embedded (hybrid) system. Even though there exist tools for the
verification of hybrid systems, such as HyTech [14], their focus is on the integration of discrete
and continuous aspects of the systems. The discrete aspects of a large application like RSM are
well beyond the scope of the state-of-the-art hybrid model checkers. Moreover, it is clear that the
actual RSM algorithm is implicitly using a discretized view of time: the radar updates are not fed
continuously to the RSM device, but only at a given frequency (nominally, at every 0.5 seconds).
This suggests that an abstraction scheme for the other continuous-type variables (location and
speed of aircraft) is adequate in this case. Last but not least, the discretized RSM model belongs
to the class of globally asynchronous/locally synchronous systems, for the analysis of which the
saturation-based algorithms implemented in SWKC excel.

4 The SWEI' model of RSM

To model RSM, we first identify the variables representing the system state and the events describing
the potential state-to-state transitions. Then, we translate this information into a Petri net for input
into WWI'. We partition the model into n + 1 submodels where n is the number of targets moving
inside the zone. The variables of the first submodel (indexed 0) describe the state of ownship. The
variables of the other n submodels describe the state of each target. For submodel i , 0 5 i 5 n, the
relevant attributes are:

5

Location: a 3-D vector (xi, yi , z i) , where the X-axis is across the width of the runway, the Y-axis
is along the length, and the Z-axis is on the vertical.

Speed and heading: a second 3-D vector (wxi, vyi, vzi).

Acceleration along the runway: ayi.

Status: an enumerated type variable, statusi.

Alarm flag: a boolean variable, a h m i .

Phase: an integer variable, phasei.

All other variables are deemed irrelevant to our study and can be abstracted away from the model
to reduce the size of its state space.

As mentioned earlier, WAFT requires a partitioning of the model variables in order to apply
the most advanced symbolic model checking techniques. A natural choice is to group variables
referring to the same target together. However, assigning all variables to the same partition leads
to extremely large L‘local’’ state spaces for each submodel, which is unacceptable. A better choice
is to further split the subnets into even smaller ones. We arranged the variables in n + 1 clusters,
as follows:

subnet 5i+ 1 : phasei
subnet 52 + 2 : statusi, alanni
subnet 52 + 3 : xi, vzi
subnet 52 + 4 : yi, vyi, ayi I subnet 52 + 5 : zi, W Z ~

Domain of the state variables. Since S W W operates on discrete-type systems, abstraction by
discretization is necessary to cope with the continuous-type variables of the RSM algorithm. To
come up with a good representation of the variable domains, we start with the roughest possible
discretization that can be extracted from the protocol specifications, and then refine it further as
needed. We had to take into consideration a balanced solution between a very rough discretization
(which potentially hides too many meaningful behaviors by merging distinct states into a single
representative), and a discretization that is too fine for an efficient state-space generation (which
prevents analysis due to the state-space explosion problem). In the end, we chose the following
domains (the subscript i is omitted for clarity):

0 The coordinates x , y , z could be as simple as x,y,z E (0, 1,2} , where 0 means out of the
monitored zone, 1 means in the vicinity, and 2 means on the runway. However, we chose a
finer parametric representation: x E (0, ..., max,}, y E (0 , ..., m a x y } , and z E (0, ..., rnax,},
where 0 means outside the zone, and the constants max,, m a x y , and max , can be adjusted to
the modeler’s preference. In other words, location (0, 0,O) represents all positions outside the
zone. A target that exits the zone, or has not yet entered it: is assigned this location. As an
alternative, we could have used an “outer layer” of locations surrounding the monitored zone,
but this would unnecessarily increase the state space with entries of the form (0, y, z) , (x, 0, z) ,
and (x, y, 0), all representing the same circumstance: the target is not being monitored.

0 The speed values vx, wy, wz could be assigned the domain (0, kl, f2} , where 0 means not
moving, k1 means moving slowly (below the predetermined taxi speed threshold T S of 45
knots), and 5 2 means moving fast (above TS) . Again, a better representation is vx, vy, wz E
(-maxspeed, ..., 0, ..., m a x s p e ~ } , using another parameter maxspeed.

6

I .

54.0

1 2 3 4

Real trajectory: (5 1.5, 16 1.3), (728.5, 93.6), (220.1, 80.3), (3 18.5, 1 1 1.2), . . .
Discretized trajectory: (1,2), (.,1), (3, I) , (4,2), - * -

Discretized speed: (+ 7, - I) , (+ I , - I), (+ I , a (+ I , + I) , I . .

Figure 2: Example projection of continuous trajectory in 2-D.

Since, in Petri nets, places cannot hold a negative number of tokens, we have to offset the
values of the speed variables by - maxSpeed.

0 The acceleration ay has only two relevant values: non-negative or strictly negative.

The status is one of { o u t , taxi, talceofl, climb, land,
rollout, flythru}.

0 The phase is one of {radar-update, set-status, detect}.

The variable phase works like a program counter for the execution of the algorithm on each
participant, which loops through three steps:

A. Update location of targets (phase = radar-update).

B. Update status of targets (phase = set-status).

C . Set or reset alarm (phase = detect).

We next discus in detail the modeling decisions that were taken for each of these three steps.

A. The 3-D motion of targets. Our discretization divides the monitored space into a number
of volumes arranged in a 3-D grid. As a result, the possible positions of the aircraft are identified
by a finite number of grid cells, from the discrete domain (O , O , 0) U (1, ..., maxz} x (1, ..., maxv} x

7

(1, ..., m a x z } . Similarly, continuous trajectories have to be represented by abstract, discretized
trajectories through the cells of the 3-D grid. This is a reasonable compromise when modeling
continuous variables with discrete-state approaches. Regarding the possible trajectories allowed in
the model, there are three alternatives to be considered.

First is the projection method, which assigns to every continuous trajectory its corresponding
discrete path in the grid. An example of such projection is given in Figure 2 (in a 2-D space,
for the sake of readability). The grid cells in the figure have the size of 100 units (feet), and the
snapshots are taken after each 0.5 time units (seconds). The speed units are measured in axis
divisions jumped after each update. The major challenge in putting in practice this method is the
difficulty in discerning between physical possibilities and impossibilities. There is no efficient way of
ruling out all anomalies. For example, a target could change its real location, while its discretized
location might not. The dependency between the speed and the number of time units a target may
rest in one grid cell is also very difficult to establish: it could be one move (at high speed), or more
(at low speed), but no upper bound on the number of time units allowed within one grid cell can
be computed in the discretized model.

Therefore, we have considered a different approach to modeling the motion of targets, that
proved to be more practical. One alternative allows nearly free movement of a target, in the sense
that a move to an adjacent cell is always allowed. In principle, a target is free to remain in the
current cell or to move to any of the neighboring 26 cells, corresponding to a nondeterministic
decrease, no change, or increase in the coordinates z, y, and z . However, the changes must be
consistent with the heading. This allows for almost random movements. On the one hand, the
restriction to allow transitions only between adjacent cells excludes a large number of trajectories,
most of which are truly physically impossible. On the other hand, we have to argue that no realistic
trajectory is excluded by the model. This is indeed true when the cell size is large (corresponding
to a “rough” discretization of the space, into a small number of cells). In our simplest model, which
captured all the interesting properties, the size of a grid cell is 900 feet. Given that the location
updates arrive on the data-link every 0.5 seconds, a target can skip a grid cell and move to a cell
two discrete positions away only if traveling at speeds exceeding 1800 ft/sec N 1227 mph (or N 1975
km/h). This is over 1.6 times the speed of sound. While it is not entirely safe to assume that these
speeds are not encountered at civil airports, their exclusion from our model is reasonable and helps
simplify the analysis. Moreover, a rough discretization also serves the purpose of mitigating the
state-space explosion problem, as the number of possible states becomes manageable. Figure 3
shows the possible moves of a target in this second model (also in a 2-D space, for clarity).

To achieve the non-deterministic choice, we model the 3-D motion not via 27 concurrent and
mutually exclusive events, but rather via the composition of a non-deterministic choice to decrease,
not change, or increase each coordinate. More precisely, the next position is computed as the
composite effect of firing three concurrent and independent events, non-deterministically chosen
from among a set of three mutually exclusive options for each axis, for a total of just nine events.
The update of the coordinate and speed component vzi for target i is modeled by the subnet
shown in Figure 4 (updates for the y and z coordinates are analogous, they are triggered by the
arrival tokens in places uy and uz, respectively). Petri net places are drawn as circles, transitions
as rectangles, and immediate transitions as thick bars. Transitions inc-x and dec-x have associated
guard expressions, and arc cardinalities (other than the default value 1) are shown on each arc. Note
that # (a) indicates the current number of tokens in place a , thus the effect of the arc from place v z
to transition update is to reset the old value of wx in preparation for its new setting. The three arrays
of immediate transitions are needed to assign a value to vzi: random positive (1 5 vz, 5 m a x s p , ~ ,
i.e., from maxsped + 1 to 2maxspeed tokens), any value (-maxspeed 5 vzi 5 mazspeed, i.e., from 0 to
2Vlaxspeed tokens), or random negative (-maxspeed 5 v x i 5 -1, Le., from 0 to maxspeed - 1 tokens).

8

3

2

1

0

-

Legend: @ current state possible next state
I

Y

x--, vx>o
y++, vy>o

-3

J
x--, vxeo
y-, vy<o

I / anyvy

I x++. vx>o I

y--, vyeo any vx
y-, vyeo

X -
... 0 1 2 3

Figure 3: Possible 2-D movements of a target ("free-motion" model).

Also, when a target enters the zone, its position is nondeterministically chosen on the frontier
of the monitored volume, i.e., 2 E (1, muzz}, y E (1, mazy}, or z = m a , (but not z = 1, since no
entry is possible from below ground). The entry speed parameters are also chosen nondeterminis-
tically, but consistently with the direction of entry. For example, a target cannot enter from the
left with a negative vz .

This second model might still include unrealistic trajectories. Examples of typically abnormal
behaviors allowed in the model are: oscillating back and forth between two adjacent squares (when
the corresponding speed components alternate from positive to negative and back) or staying forever
in one square, even with a positive speed. This is still acceptable in the verification process as long
as the model covers all realistic behaviors. If a property holds globally in the abstract model, then
it will also hold in the realistic model. However, if a property does not hold globally, we must

9

radar-update set-status

update done

Figure 4: Subnet to update the variables z and wz in each submodel

check the corresponding counterexample generated by SMART to determine whether it represents a
realistic scenario.

If a more thorough elimination of unwanted trajectories is desired, a third alternative that
forbids abrupt variations in speed can be considered. In other words, both the coordinates z, y, z
and the speed components uz,wy,wz can change by at most one in absolute value. This further
restriction can be achieved by allowing only the increase, decrease, and no change of speed at each
timestep, together with a consistent update of the coordinates: for example, the variable z cannot
be decreasing when the speed component uz is non-negative.

In comparison to the free-motion model, Figure 5 shows the possible next states (in 2-D space)
for a target whose speed components are vx = 3 and wy = 3 in the current state. In this case, only
four new locations are possible, corresponding to the no change or increase in 2 and, independently,

10

3

2

1

0

-

Y

I Legend: @ current state possible next state I
X

+
... 0 1 2 3

Figure 5 : Possible movements from a state satisfying vz = 3, vy = 3 (“restricted” model).

y. The reduced number of choices is due to the strictly positive value of the speed, which does not
allow any move in the negative axis direction. Only when one speed component is 0 in the current
state, the target can move in both directiorw of the corresponding axis, a, see11 in Figure 6. In
this model, at least two steps are required to go from positive to negative speed (and vice versa).
This implies that “zigzagging” is not possible, a fact that could have a significant importance in
the analysis, as seen in Section 5 .

We implemented both versions, with free or restricted movement between adjacent cells, in
sryrppr.
B. Status definitions. In the second phase of the execution loop, the status variable of each
aircraft is deterministically updated using the other state information. In our model, the status

11

3

2

1

0

-

Y

y+t ,uy = 1
ux 7 E {0,1, /.i.; a }

uy = 1

ux E { O , l , f
uy E { - l , O , 1

I Legend: @ current state possible next state I
X

+
... 0 1 2 3

Figure 6: Possible movements from a state satisfying v z = 1, wy = 0 (“restricted” model).

values are:

out : not in the monitored zone
E (z = 0) A (y = 0) A (Z = 0)

taxi: on the ground, either at low speed or not with a runway heading
G (Z = 1) A ((1 ~ ~ 1 5 T S A 5 T S) V (UX # 0))

takeof f : on the ground, with a runway heading, accelerating
I (Z = 1) A (Ivy1 > T S) A (2/x = 0) A (uY 2 0)

12

..

~1 grid size
muxSpeed 1

3 x 5 ~ 3 2
5 x 1 0 ~ 5 2

lOxlOxl0 2
3 x 5 ~ 3 5

5 x 1 0 ~ 5 5
lOxlOxl0 5

Number of states in the model
1 tar. 2 tar.

SS gen. time (sec) SS gen. memory (MBytes)
4 tar.

l . 0 ~ 1 0 ’ ~ 3.4~10” 1 . 1 ~ 1 0 ~ ~ 3 . 5 ~ 1 0 ~ ~ 2.01 2.93 3.93 4.91 2.00 3.00 4.00 4.99
4 . 1 ~ 1 0 ~ ~ 8 . 4 ~ 1 0 ~ ’ 1 . 7 ~ 1 0 ~ ’ 3 . 5 ~ 1 0 ~ ~ 5.52 8.27 11.19 13.91 7.21 10.81 14.41 18.01
7 . 6 ~ 1 0 ~ ~ 6 . 6 ~ 1 0 ~ ~ 5 . 8 ~ 1 0 ~ ’ 5 . 0 ~ 1 0 ~ ~ 13.62 20.58 27.50 34.42 20.86 31.29 41.72 52.15
2 . 7 ~ 1 0 ~ ~ 4.4~10” 7 . 2 ~ 1 0 ~ ~ 1 . 2 ~ 1 0 ~ ~ 4.41 6.51 8.77 10.98 4.22 6.33 8.44 10.55
8 . 3 ~ 1 0 ‘ ~ 7 . 6 ~ 1 0 ~ ~ 6 . 9 ~ 1 0 ~ ’ 6 . 3 ~ 1 0 ~ ~ 12.91 19.07 25.42 32.05 15.48 23.21 30.95 38.69
1 . 4 ~ 1 0 ’ ~ 5 . 0 ~ 1 0 ~ ~ 1 . 8 ~ 1 0 ~ ~ 6 . 7 ~ 1 0 ~ ~ 28.45 42.84 57.25 71.75 39.73 59.59 79.45 99.31

3 tar. 4 tar. 1 tar. 2 tar. 3 tar. 4 tar. 1 tar. 2 tar. 3 tar.

Table 1: State-space generation results for our model, for 1, 2, 3, or 4 targets and as a function of
m a x , x m a x y x maxz and maxsped.

rollout: on the ground, with a runway heading, decelerating
(Z = 1) A (1 ~ ~ 1 > T S) A (V X = 0) A (aY < 0)

climbout: airborne, with a runway heading, strictly positive vertical speed
(Z > 1) A (wx = 0) A (vz > 0)

land: airborne, with a runway heading, negative vertical speed
(Z > 1) A (wx = 0) A (wz 5 0)

j lythru: airborne, not in climbout or land mode
= (z > 1) A (wz # 0)

The predicates z = 1 and z > 1 used above also imply x > 0 and y > 0, by the way we designed the
non-monitored zone to be represented by a single cell, not by a rim of states. Also, the acceleration
ay, needed to discern between talceofl and rollout status, does not need to be modeled directly,
since its value is computed on the spot based on the variation of the variable wy.

The partial model constructed so far can be used as a building block for further analysis, since
it captures the free movement of targets in 3-D space (phase one of RSM) and the target status
assignments (phase two of RSM). This model exhibits strong event locality, i.e., each event depends
and affects only a few levels; this is an essential property exploited by the saturation algorithm we
employ. To evaluate its complexity, we collected measurements of the state spaces generated for
different input parameters of this core model: number of targets, n, grid size m a x Z , m a x y , and
max,, and speed thresholds, maxsped . The state-space size, runtime, and memory consumption
are listed in Table 1. The results show that the state space can be generated for multiple targets, a
fairly large size of grid, and multiple thresholds of speed, in a few minutes using under 100 MBytes.

C. Setting the alarm. The third and most important phase of the RSM algorithm is setting
the alarm flag for every target. In pseudo-code, this corresponds to a single variable assignment
statement: set the (boolean) value of each alamni based on different combinations of the current
values of the other variables, as listed in operational state matrix of Table 2. We can either
model the third phase directly, by adding transitions to the Petri net, or define queries that use a
combination of status and position variables to determine whether the alarm would have been set
correctly. We choose the former approach.

Modeling this rather complex assignment statement in a Petri net is difficult because of two
factors. First, predicates such as “distance is closing” or “in the takeoff path” potentially involve
geometry and linear equations and are difficult to express in a discretized model. However, certain
factors help make our task easier: the designers kept the concepts simple and trigonometry can be

13

Target +

Ownship 1
tmi

takeoff
climbout

land
rollout
BYthrn

I taxi taKeoff
a A f
dVe
dVe
dVe
aVd
bAc

a: Distance closing
b: In takeoff/landing path

climbout

a A f
dVe
dVe
dVe
aVd
bAc

-
land

aAf
dVe
dVe
dVe
aVd
bAc -

rollout

aAcAf
aVd
dVe
aVd
dVe
bAc

Rythru

-

bAc
bAc
bAc
bAc
-

e: Distance less than min. sep.
d: Takeoff/landing in same direction, less than min. sep.
e: Takeoff/landing in opposite direction, closing
f : Taxifstationary on or near runway

Table 2: Operational state matrix for setting the alarm.

circumvented on a case by case basis. For example, “distance to target i is closing” should normally
be evaluated by comparing the value of the expression J(x0 - xi)2 + (yo - yi)2 + (ZO - zi)2 in the
current and previous states. This could further imply that the previous location of each target
should be stored in a set of auxiliary variables, say oldzi, oldyi, oldzi, further increasing the state
space. However, this can be avoided by exploiting the information derived from each aircraft’s
status. For example, if ownship is taxiing and target i is taking off, we know that zo = 1, ~1x0, wyo 5
TS, zi = 1, vxi = 0, lwyil > T S , and zlzo = zlzi = 0, i.e., the target is on the ground, lined up with
the runway and moving faster than the taxi speed limit. For the distance to be closing, it is enough
for ownship to be in front of the target, depending on which direction this is moving. Hence, in
this situation, the predicate can be expressed as

We can similarly express the other predicates as follows:
b A c (v y o > O A ~ o I ~ i 5 ~ 0 + 1 A 1 2 0 - - z i l I 1 A z i 5 2)

5 2) V
E

(VYO < O A YO - 1 5 yi <yo A I~o-zil 5 1 A
V ~ O * V Y ~ > 0 A 1x0 -
(VYO > 0 A V Y ~ < 0 A ~i 2 y0)V

d 5 1 A 1 ~ 0 - yil 5 1
e

f 1 <xi < max,,
where the above example formulae are derived for the following pairs of states, respectively: b A c
for takeoff-flythru, d and e for takeoff-takeoff.

The roughness of the discretization can also help simplify the model. If m a z , = 3 (which is
a reasonable assumption given that there is usually no room for two aircraft on the runway side-
by-side, anyway), then xi = 2 for any aircraft taking off or landing. In this case, the predicate
1x0 - xi1 5 1 is equivalent to 1 5 xo 5 3, which is always true when ownship is not out.

Kronecker consistency requirements. A second challenge in modeling the third phase is that
the Kronecker consistency requirements force us to split events into multiple finer-grain events.
For example, the predicate “target i is in takeoff/landing path of ownship” can be expressed as:

E

(w o < 0 A wi > 0 A Yi I Yo)

14

maxspeed --f

I grid size
3 x 5 x 4
3 x 7 x 4

3 x 10 x 5
5 x 10 x 7

3 x 5 x 4
3 x 7 x 4

3 x 10 x 5
5 x 10 x 7

Table 3: Results from state-space generation on the complete m o d .

~~

2) 3 1 4 1 5
State-space generation time (sec.)
75.92 105.17 179.28 252.25

195.54 324.65 604.23 805.95
995.18 2212.24 4668.55 7348.27

Memory consumption (MB)
48257.3 - -

11.19 21.20 32.58 49.39
18.27 36.02 56.91 87.25
42.59 83.53 138.56 218.85

246.22 - -

However, since variables
involving the two must be split to satisfy Kronecker consistency, by domain enumeration:

and 90 are described by different local states of the model, each term

The same procedure must be applied to ZO and xi, by further splitting terms: V15c 2- <mm2 VliCylmmy

((Xi = CZ) A (2 0 = CZ) A (w o > 0) A (Yi = C y) A (Cy > Yo))v

((Xi = CZ)A (20 = C3C)A (VYO < O M (Yi = C y) A (C y < Y o >)

This generates 2.muxZ.muxy events from a single original event, one for each term of the disjunction.
The split events require over 2000 lines of additional SWWT code, compared to just 500 lines needed
to model the first two phases. At the end of this process, the most significant change in the model
was a severe loss of event locality, leading to a slowdown in generation time and, most importantly,
a much higher memory consumption. The peak MDD size increased to over 1000 times larger than
the final, causing the SWWT model checker to run out of memory for large parameters, including
multiple targets. However, we were still able to build the state space for one target and a medium
size of the grid, within 1GB of memory and less than five minutes. This was enough to expose
several potential problems with the decision procedure of the protocol. Table 3 shows the state-
space measurements on this final 9" model with just one target. Missing entries in the table
correspond to parameter choices that required excessive runtime or memory.

At the same time, it is worth mentioning that the saturation technique implemented in 2"
was the only technique able to build the state-space of the model. Our attempts to use other tools
have failed: the symbolic model checker NuSMV [9] runs out of memory even before starting the
generation, as the BDD encoding of the transition reiation is too large, while the explicit model
checker SPIN [15] explores a very small fraction of the state-space (less than 1/106 even when using
partial order reduction technique) to be able to expose any problem.

5 Model checking RSM

Model checking is concerned with verifying temporal logic properties of discrete-state systems
evolving in time.

15

I LEGEND: 0 p holds 0 q holds 0 don’t care I

Figure 7: The semantic of CTL operators.

SNAW implements the branching time Computation Tree Logic (CTL) [lo], widely used in prac-
tice due to its simple yet expressive syntax. In CTL, operators occur in pairs: the path quantifier,
either A (on all future paths) or E (there exists a path), is followed by the tense operator, one of X
(next), F (future, finally), G (globally, generally), and U (until). Their semantic is informally shown
in Fig. 7, where system states are depicted as the nodes of the trees and arcs represent transitions
between states, so that a node precedes in temporal order the nodes it can reach. In each case, the
root node is labeled with a CTL formula it satisfies.

Notation and formal definitions. The operational state matrix in Table 2 lists the alarm
setting criteria, as given in the documentation of the RSM algorithm [12]. Our study aims at
exhaustively checking whether this operational matrix is able to detect all incursion scenarios. A
situation where two aircraft get too close to each other (within the minimum separation distance of
900 feet) without the alarm variable having been set is from now on called a missed alarm scenario.
The following predicates are used to describe properties of interest (for clarity, subscripts o and t
refer to ownship and target, respectively):
detect = phase, = detect A phase, = detect

alarm = alarmt=true
sep = disturLce(o,t) > min. sep.

track = status,, $! { taxi,fEythru} V statust $! { taxi,j?ythru}

We begin with asking the most simple safety property.

A safety property. “Is there a tracked state where minimum separation is lost and the alarm is
off 2”

0 CTL syntax: EF(detect A track A i s e p A i a l a r m)

16

I I

t o :
ownship= t axi
target = t axi
distance> MS
alarm = OFF

ti = t o + A:
ownship=takeoff
target =t axi
distance<MS
alarm = ON

t2. = t o + 2A:
ownship= t akeoff
target =t axi
distance< MS
alarm=OFF

LEGEND:
ownship position

@ target position

<; min. separation

Figure 8: Scenario for the memory-less property (ground level).

The omission of the predicate detect from the query can lead to false positives since, if a target’s
coordinates are inspected in the middle of the radar updates or its status is queried before it is
modified accordingly, the data can be inconsistent. Therefore, all queries should be asked only at
the right moment: when ownship executes phase C of its algorithm.

A scenario that contradicts the safety query arises when the condition “distance is closing” is
not satisfied in the current state. This is the case of the third snapshot of Figure 8. However, this
might not correspond to an unwanted behavior, since the alarm might have been set in a previous
state, when the minimum separation was lost. The value of the alarm variable also depends on
whether the alarm is (‘aged” or not for a few more cycles. Nevertheless, the situation is still of
potential concern, even with aging of the alarm, since the target can maintain a constant distance
(at less than minimum separation) for longer than the duration of the aging, eventually resulting
in a “bad state” in the round after the alarm expires.

The “memory-less” nature of the query influences the result. We looked at the property in
a particular snapshot of time, without considering the sequence of events leading to the current
state. To get a better understanding of the system, we next investigate the states of the system
immediately after the minimum separation distance between two aircraft is lost.

Analysis of the transition that causes loss of separation. “Is there a state where minimum
separation i s lost by transitioning to the current state while the alarm is 08 ?”

0 CTL: EF(detect A track A sep A E[(ide tec t) U (detect A track A i s e p A i a l a r m)])

The nested EU operator in the query (instead of EX) is due to the fact that several transitions are
needed to complete the update of the coordinates, 3, and of the status, 1, and to set the alarm
again, 1. A witness for this query (see Figure 9) has ownship in a landing or climbout state, the
target flying across the runway faster than ownship, moving within separation distance from the

17

1

ownship=landing
target =flyt hru
distance< MS
not in landing path !
alarm=OFF

I I

ownship=landing
target =flyt hru
distance> MS
alarm = OFF

LEGEND:
ownship position

@ target position

<: min. separation
in landing path

Figure 9: Scenario 2 (airborne)

side at an angle. The condition for setting an alarm in this circumstance is “distance less than
minimum separation and target in takeoff/landing path”. The second term is not satisfied, hence
no alarm is raised. Aircraft can actually collide (trajectories intersect in Figure 9>, while none of
the participants are ever warned.

The above scenario is the only one satisfying this query, a fact attesting to the robustness of
RSM. This situation can be corrected by adding “distance less than minimum separation” as part
of the criterion for this combination of states.

We included the predicate track in both states (before and after the transition), as we are
interested in scenarios involving only takeoff and/or landing trajectories. However, this additional
constraint could mask some other undesired behaviors. Therefore, we next ask a more general
question.

A stronger safety property.
reachable without ever previously setting the alarm?”

“Is there a tracked state where minimum separation is lost,

0 CTL: E [(l a l a r m) U (detect A track A i s e p A l a l a m)] ;

Several scenarios satisfy this query.

Example 1. As shown in Figure 10, actors enter the monitored area taxiing fast, not aligned to the
runway, and already at close distance to each other. Note that the RIPS specifications explicitly
ignore this situation, as the algorithm is only active when ownship is taking off or landing. However,
once on the runway, say ownship changes direction and aligns itself to the runway. Thereafter,
it is categorized as takeoff (or climbout, if it becomes airborne). The other aircraft stays within
minimum separation, but it does not close in: it can be either behind ownship or, more dangerously,
in front of it. No alarm is raised because the criterion “distance is closing” is, again, not satisfied.

18

t z = t o + 2A:
ownship=t akeoff
target = t axi
distance< MS

LEGEND:
ownship position

@ target position

r: min. separation

Figure 10: Scenario 3 (ground level).

If the distance between aircraft at entry is very small, there might not be enough time for an escape
maneuver, even if, later on, the alarm set by closing in.

Figure 10 shows an abstract trace that contradicts this safety property. The trajectories are
shown for a horizontal section in the monitored zone at ground level. The third snapshot illustrates
the “bad state” of the system: the two aircraft are within minimum separation distance, but no
alarm has been issued either for the current state or any of the previous states in the scenario.

Example 2. An identical scenario exists for airborne states that are not tracked (status f iythm).
Example 3. Additional scenarios do not satisfy this safety property, where events develop immedi-
ately after both planes enter the monitored zone. The bad behavior in these cases is caused by the
fact that the previous position is unknown - coordinates (0, 0,O) in our model - for both planes,
hence distance cannot be closing in the next state. If the airplanes enter the zone at positions
very close to each other (e.g., both are trying to land), the alarm will not be raised. However, this
behavior is exhibited only in our theoretical model, due to our choice of modeling conventions, and
not in the actual implementation of the protocol on the RSM device.

Summarizing the common characteristics of the above scenarios, we observe that the key factor
is that both aircraft; are in the taxi or Sythru status when minimum separatim is lost. The
situation is not tracked, hence a potentially bad occurrence is masked by a protocol specification.
The predicate “distance closing” is not satisfied and no alarm is issued, although the distance is
less than minimum separation.

To further extend our discussion, we look at possible continuations of the scenario after the
bad state is reached. If the distance is closing in the next state, a warning will be issued and the
“missed alarm” situation will cease to exist. The only way for a malicious agent to perpetuate the
problem is shown in Figure 11, which is an extension of Scenario 3. The target can stay within
minimum separation radius for a longer period of time if it “zig-zags” in front of ownship and at

19

t o :
ownship=t axi
target=taxi
distance=D

I

t2 = to $- 2a:
owns hip = t a keoff
target =t axi
distance=D

I I

LEGEND:
ownship position

@I target position

<: min. separation

ti = to + A: t 3 = to + 3A3
ownship=taxi
target =t axi
distance=D

target = t axi

Figure 11: Scenario 4 (ground level).

each radar update has the same distance to ownship. The target has t o zig-zag to maintain the
distance, since following a parallel path to ownship will cause RSM to consider it as taking off. The
alarm criterion for the new combination of operational states is “taking off in the same direction
and distance less than minimum separation”. Therefore, an alarm will be issued as soon as the
target stops zigzagging.

The case when the target is not an aircraft (vehicle, service truck, etc.) adds an extra degree
of freedom for a malicious behavior of the target (see Scenario 5, in Figure 12). Initially, ground
vehicles were always considered in taxi mode by the protocol, regardless of their speed, heading, and
Y ” J nh~rcica! “* coordinates. Therefore, zs in Scenario 4, the target may follow ownship at close distance,
and even continue chasing ownship after it is lined up for takeoff and accelerating. No flag will be
raised for the same reasons as in Scenario 4.

For the most recent implementation of RSM, the designers took into account our findings and
eliminated the special treatment given to ground vehicles. This addresses the situation in Scenario
5.

The situation in Scenario 4 is of less concern, since it is extremely difficult to realize in practice,
even intentionally by a saboteur. At the same time, there is some benefit in exposing it: the designer
is aware of this low-probability event. Also, by the fact that is the only remaining unwanted behavior

20

t o :
ownship=taxi
target = t axi
distance=D
alarm = OFF

t k = t o + k . A , k > O :
ownship=takeoff
target =t axi
distance=D
alarm=OFF

I

e ownship position
@ target position

.I min. separation

Figure 12: Scenario 5 - aircraft vs. vehicle.

in the system, it serves as a validation for phase 3 of the RSM algorithm.

6 Conclusions and future work

Several lessons were learned from our analysis, first and foremost that our formal verification
approach and techniques have an undeniable value. We presented the designers with a list of
important findings which were not exposed during the testing activities involving real aircraft,
already underway at different airport locations. The merit of our technique is that, besides being
considerably less expensive, it is exhaustive.

We were able to analyze all possible scenarios in our model and found situations of potential
concern that happen with extremely low probability. These are almost impossible to expose during
either testing procedures, which usually afford no more than a dozen test flights a day, or simulation
sessions. When compared to the actual state space sizes of the order of 1013 - states, this
shows the need for exhaustive analysis. The second outcome of our experiments was that, after
identifying the problems and suggesting modifications to the protocol to eliminate them, we have
increzsed the level of msuraxxe of the desigii in what concerns missed alarms. Ail Lhe findings
were related to situations when only one aircraft is landing or taking off and the other is not. The
section of the decision table dealing with both aircraft landing or taking off was validated in the
original form.

With respect to the dual analysis, of false alarms, this is still on the list of future plans. From
a practical point of view, pilots are equally concerned with both types of situations. Individual
reports indicate that frequent false alarms can become a distraction or, in the best case, a nuisance
factor in operating an airplane. It is also the case that a system with too many false alarms will

21

tend to be switched off or ignored, thus rendering it useless. Therefore the occurrence rate of false
alarms has to be reduced, even though these are not as critical as missed alarms, which should
be completely eliminated. The designers of the protocol had to come up with a balanced solution
trading the simplicity of very “loose” requirements that raise too many alarms for the complexity of
“stricter” conditions that decrease the number of false alarms, but make the analysis more difficult.

Another aspect not discussed here is fault tolerance. We assumed that all scenarios happen
in the absence of communication faults, meaning that the radars and data-links provide accurate
and timely updates to all participants. A natural extension of our analysis is to include faulty
behaviors, of either benign nature (missed or late updates) or malicious/Byzantine (inconsistent
data between participants). This type of analysis requires the inclusion of probabilistic aspects in
the model, and will be the subject of further research. While our work verifies the correct operation
of RSM under no-fault assumptions, the presence of faults on the data-link may significantly impact
the correct operation of the algorithm. On the one hand, if all data is faulty, RSM will be of no
help whatsoever in avoiding incursions. On the other hand, if no data is faulty, we have already
demonstrated the correctness of the algorithm. The task of realistically modeling faulty data that
falls in between these extremes is a major challenge.

Finally, this case study has inspired ideas of theoretical nature that can result in improvements
and extensions to our technique. The observation that a single temporal logic query can have more
than one counterexample (thus correcting it alone will not entirely rid the system of the error)
suggests that generating and storing all counterexamples is beneficial. This is not commonly done
by model checkers. Also, even though the Kronecker matrix encoding of the transition relation
has been found more efficient than the traditional BDD encoding in all our previous studies, this
particular application has revealed a situation when the need to satisfy the consistency requirements
could be detrimental, by producing an excessive number of split events. A saturation approach
that does not require the model to be Kronecker consistent has ben proposed in [19], but it can
suffer from poor performance due to excessively large local state spaces; we are currently working
on extending it so that it is completely general, yet with an efficiency approaching that of the
Kronecker-consistent case.

References

[l] Sharon 0. Beskenis, David F. Green, Paul V. Hyer, and Edward J. Johnson Jr. Integrated
Display System for Low Visibility Landing and Surface Operations. NASA Langley Contractor
Report 208446, July 1998.

[2] Victor Carreiio, Hanne Gottliebsen, Rick Butler, and Saraswati Kalvala. Formal Modeling
and Analysis of a Preliminary SATS Concept. NASA Langley Technical Report 12999, March
2004.

[3] William Chan, Richard J. Anderson, Paul Beame, Steve Burns, Francesmary Modugno, David
Notkin, and Jon L). Reese. Model checking large software specifications. IEEE Transactions
on Software Engineering, 24(7):498-520, July 1998.

[4] Gianfranco Ciardo, Robert L. Jones, Andrew S. Miner, and Radu I. Siminiceanu.
W: Stochastic Model checking Analyzer for Reliability and Timing, User Manual.
ht tp: / /cs. ucr.edu/-ciardo/SMART/.

22

[5] Gianfranco Ciardo, Robert L. Jones, Andrew S. Miner, and Radu I. Siminiceanu. Logical and
stochastic modeling with SWVT. In Modelling Techniques and Tools for Computer Performance
Evaluation, LNCS 2794, pp. 78-97, September 2003.

[6] Gianfranco Ciardo, Gerald Luttgen, and Radu Siminiceanu. Saturation: An efficient iteration
strategy for symbolic state space generation. In Proc. Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 2001), LNCS 2031, pp. 328-342, Genova, Italy, April
2001.

[7] Gianfranco Ciardo and Andrew S. Miner. A data structure for the efficient Kronecker solution
of GSPNs. In Peter Buchholz, editor, Proc. 8th Int. Workshop on Petri Nets and Performance
Models (PNPM'99), pp. 22-31, Zaragoza, Spain, September 1999. IEEE Computer Sociecty
Press.

[8] Gianfranco Ciardo and Radu Siminiceanu. Using edge-valued decision diagrams for symbolic
generation of shortest paths. Proc. Fourth International Conference on Formal Methods in
Computer-Aided Design (FMCAD 'E?), LNCS 2517, pp. 256-273, Portland, November 2002.
Springer-Verlag.

[9] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri. NuSMV: a
new Symbolic Model Verifier. Proc. Computer-Aided Verification (CA V'99), N. Halbwachs
and D. Peled, editors, LNCS 1633, pp. 495-499, Trento, Italy, July 1999. Springer-Verlag.

[lo] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. IBM Workshop on Logics of Programs, LNCS 131, pp.
52-71. Springer-Verlag, 1981.

[ll] Gilles Dowek, Cesar Muiioz, and Victor Carreiio. Abstract Model of the SATS Concept of
Operations: Initial Results and Recommendations. NASA Langley Technical Report 213006,
March 2004.

[12] David F. Green, Jr. Runway safety monitor algorithm for runway incursion detection and
alerting. NASA Langley Contractor Report 211416, Jan 2002.

[13] Mats P.E. Heimdahl. Experiences and lessons from the analysis of TCAS 11. Proc. ACM
SIGSOFT Int. Symposium on Software Testing and Analysis (ISSTA '96), pp. 79-83, 1996.

[14] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: a model checker for
hybrid systems. International Journal on Software Tools for Technology Transfer (STTT),
l(1-2):llO-122, December 1997.

[15] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279-295, 1997.

[16] Denise R. Jones. Runway Incursion Prevention System Fact Sheet. October 2000.

[17] Carolos Livadas, John Lygeros and Nancy A. Lynch. High-Level Modelling and Analysis of
TCAS. RTSS '99, IEEE Press, 1999.

[18] Andrew S. Miner and Gianfranco Ciardo. Efficient reachability set generation and storage
using decision diagrams. Proc. 21th Int. Conf. on Applications and Theory of Petri Nets
(ICATPN '99), LNCS 1639, pp. 6-25, June 1999.

23

[19] Andrew S. Miner. Saturation for a general class of models. In G. Franceschinis, J.-P. Katoen,
and M. Woodside, editors, Proc. QEST, pages 282-291, Enschede, The Netherlands, Sept.
2004.

[20] Tadao Murata. Petri Nets: properties, analysis and applications. Proc. IEEE 77(4):541-579,
April 1989.

[21] J. Timmerman. Runway Incursion Prevention System, ADS-B and DGPS data link analysis,
Dallas - Ft. Worth International Airport. NASA Contractor Report 211242, NASA Langley,
Hampton, VA, November 2001.

24

